SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

MATHEMATICS

Course Title:

MTH 367-4

Code No.:

ELECTRICAL/ELECTRONIC TECHNOLOGY; COMPUTER TECHNOLOGY

Χ

Program

Semester:

JULY, 1988

Date:

J. REAL

Author:

New

Revision:

APPROVED:

Chairperson

Date *tj*

MATHEMATICS MTH 367-4

COURSE NAME COORSE NUMBER

PHILOSOPHY/GOALS;

When the student has successfully completed this course h6/she will have demonstrated an acceptable understanding of the course material as listed elsewhere.

The student should then be able to apply this knowledge in his/her studies of other courses in the program where there are applications of these mathematical concepts.

Upon graduation, the student should be able to develop a good command of this subject matter through additional practice.

METHOD OF ASSESSMENT (GRADING METHOD):

Grades:

Grades reported on your transcript are based on a weighted average of tes scores, on the following basis:

85 - 100% A+ 75 - 84% A 65 - 74% B 55 - 64% C 0 - 54% R or x

The method of calculating a weighted average is described in your student hand-book.

All tests are scheduled in advance. Hence attendance is mandatory. Unexcused absence from a test will result in a mark of zero for that test If a student is prevented from writing a test by illness, the student mus phone the instructor (759-6774) before the time of the test and leave a message for the instructor, at his extension stating the reason for absence. Upon return to classes, the student must see the instructor immediately to arrange a time and place for a make-up test. The student must have a doctor's certificate or a note from the college nurse.

There will be no rewrites (make-up tests) or supplemental exams during th semester or at the end of the semester.

TEXTBOOK:

TECHNICAL CALCULUS WITH ANALYTIC GEOMETRY - A.J. Washington

MTH 367-4

TOPIC NO	NO. OF PERIODS	TOPIC DESCRIPTION ASSIGNMENTS		
	15	Methods of Integration		
		Review integration of trigonometric exponential, logarithmic, and inverse functions Integration by parts Algebraic substitutions Trigonometric substitutions Partial fractions Use of integration tables 330 335 335 343,34	19	
	12	Power Series-	Ch	
		Maclaurinseries p. 452 Applications of Maclaurin p. 458, Fourier series p. 474 Review exercise p. 475	462	
	15	First Order Differential Equations		
	15	Solutions of differential equations p.480 Separation of Variables p.484 Integrable combinations p.487 Linear equations. Exact and integrating factor p.490 Applications p,496 Second Order Differential Equation	Ch	
		Linear equations - homogeneous p.505 Repeated and complex roots of auxiliary equation p,510		
		Non-homogeneous equations p,514		
		Applications p.521		

MTH 367-4

TOPIC NO.	NO. OF PERIODS	TOPIC DESCRIPTION	ASSIGNMENTS	REFEREN(
5	8	Laplace Transforms-		Ch. 1'
		Finding transform by d table of transforms (p fractions) Solving differential		
		equations	p. 542	
		Review exercise	p. 543	